The q-deformed boson realization of representations of quantum universal enveloping algebras for q a root of unity. I The case of $U_{q} S L(L)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 243265
(http://iopscience.iop.org/0305-4470/24/14/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:02

Please note that terms and conditions apply.

The q-deformed boson realization of representations of quantum universal enveloping algebras for q a root of unity: (I) the case of $\mathrm{U}_{4} \mathrm{SL}(l)^{*}$

Chang-Pu Sun \dagger and Mo-Lin Ge \ddagger
\dagger CCAST (World Laboratory), PO Box 8730, Beijing, People’s Republic of China; Physics Department, Northeast Normal University, Changchun 130024, People's Republic of China; and Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071, Peoplẹ's Republic of China§
\ddagger Theoretical Physics Division, Nankai Institute of Mathematics, Tianjin 300071, People’s
Republic of China§

Received 2 October 1990

Abstract

The properties of q-deformed boson operators with non-generic $\bar{q}(\bar{q}$ is a root of unity) are analysed by using the representation theory method and their finitedimensional representations are thereby obtained. Based on this discussion, reducibilities and decompositions of q-deformed boson-realized representations of quantum universal enveloping algebra $U_{q} S L(l)$ are studied for non-generic cases. The explicit matrix elements of some indecomposable representations are obtained on the q-deformed Fock spaces. Necessary details are provided for $\mathrm{U}_{q} \mathrm{SL}(2)$ and $\mathrm{U}_{q} \mathrm{SL}(3)$. In particular, the Lusztig operator extension of $\mathrm{U}_{4} \mathrm{SL}(2)$ is discussed in an explicit form.

1. Introduction

The quantum group and quantum universal enveloping algebra (QUEA) [1-6] are deeply rooted in many nonlinear physics theories through the Yang-Baxter equation [7, 8]. Recently, considerable attention has been paid to the representation theory of qUEA. The standard theory of mathematics has been developed respectively for the generic case $[9,10]$ and the non-generic case that q is a root of unity [11, 12]. Besides these, the q-deformed boson (oscillator) realization, a q-analogue of Schwinger-Jordan mapping, of QUEA was presented independently by different authors to simplify manipulations constructing representations of QUEA in [13-15], where our discussion, as a continuation of previous work [16-18] about the usual boson realization of Lie algebras, mainly involves the QUEA $\mathrm{U}_{q} \mathrm{SL}(l)=\mathrm{SL}_{q}(l)$. This method of representation theory is not only easy to comprehend for physicists, but is also a powerful tool to calculate the explicit matrix elements for the representations of qUEA. Following this work, various further investigations have been carried out in [19-24].

However, except for [19] and [24], where the non-generic case is discussed to a smail extent, the discussions of the q-deformed boson realization mentioned above only concern the generic case that q is not a root of unity and there was not a systematic

[^0]analysis for the q-deformed boson realization of QUEA in the non-generic case. In this and a forthcoming paper, we will systematically study the q-deformed boson-realized representations of QUEA when q is a root of unity, since this case is very important for physics [25-27].

This paper is arranged as follows. In section 2 we discuss the representations of the q-deformed boson algebra, which plays a crucial role in our problem for the non-generic case. Using the central idea in section 2, we study the decomposition structure of q-deformed boson-realized representations of $\mathrm{SL}_{q}(2)$ for the non-generic case in section 3 and then discuss the representations of the Lusztig extension $\widehat{\mathrm{SL}}_{q}(2)$ of $\mathrm{SL}_{q}(2)$ explicitly in section 4 . In section 5 , we generalize the discussion of $\mathrm{SL}_{q}(2)$ to the QUEA $\mathrm{SL}_{q}(l)$ and general results are obtained. Applying them to $\mathrm{SL}_{q}(3)$, we discuss q-deformed boson-realized representations of $\mathrm{SL}_{q}(3)$ in detail for $p=3$.

In this paper the symbols $\mathbb{Z}, \mathbb{Z}_{+}, \mathbb{C}$ and \mathbb{Z}^{l} denote respectively the set of integers, non-negative integers, the complex number field and the set of lattice points: $\left\{\left(n_{1}, n_{2}, \ldots, n_{1}\right) \mid n_{i} \in \mathbb{Z}, i=1,2, \ldots, l\right\}$. According to Lusztig [11], we can consider p as an odd integer $\geqslant 3$ without losing generality.

2. Representations of \boldsymbol{q}-deformed boson operators for $\boldsymbol{q}^{\boldsymbol{p}}=\mathbf{1}$

The q-deformed boson (q-в) algebra B is an associative algebra generated by the boson operators a^{+}and $a^{-}=a, \hat{N}$ and unity that satisfy

$$
\begin{equation*}
a a^{+}-q^{-1} a^{+} a=q^{\hat{N}}=Q \quad\left[\hat{N}, a^{ \pm}\right]= \pm a^{ \pm} \quad q \in \mathbb{C} . \tag{1}
\end{equation*}
$$

Its elements a, a^{+}and Q generate its subalgebra, called q-deformed Heisenberg-Weyl (q - Hw) algebra. For the generic case, the representation theory of q-в and q - Hw algebras has been given in [28].

Now, we consider the non-generic case. On the q-deformed Fock space $F:\{|n\rangle=$ $a^{+n}|0\rangle \mid n \in \mathbb{Z}_{+}$and $\left.a|0\rangle=0, Q|0\rangle=|0\rangle\right\}$, we obtain an infinite-dimensional representation ρ

$$
\begin{equation*}
a^{+}|n\rangle=|n+1\rangle \quad a|n\rangle=[n]|n-1\rangle \quad Q|n\rangle=q^{n}|n\rangle \tag{2}
\end{equation*}
$$

by using the relations

$$
Q a^{ \pm n}=q^{ \pm n} a^{ \pm n} Q \quad a a^{+n}=[n] a^{+n-1} Q+q^{-n} a^{+n} a
$$

which result from (1). Here we have defined that $[f]=\left(q^{+}-q^{-f}\right) /\left(q-q^{-1}\right)$ for any operator f or number f.

Although the representation (2) is irreducible for the generic case, it is reducible for the non-generic case because there exists the singular vectors $|k \cdot p\rangle$ such that $a|k \cdot p\rangle=0$ (this is due to $[k \cdot p]=0$) for $k \in \mathbb{Z}_{+}$.

Theorem 1. For the non-generic case, the representation (2) is indecomposable (reducible, but not completely reducible).

Proof. From (2), we easily observe that there exists an invariant subspace $V^{[k]}$: $\{\mid k p+$ $\left.n\rangle \mid n \in \mathbb{Z}_{+}\right\}$defined by a singular vector $|k p\rangle$, namely, the representation is reducible. Obviously, a complementary space $\tilde{V}^{[k]}:\{|n\rangle \mid n=0,1,2, \ldots, k p-1\}$ is not invariant. Now, we need to prove that any complementary subspace for $V^{[k]}$ is also not invariant. In fact, we suppose that there is an invariant complementary space V^{\prime} for $V^{[k]}$ such
that $F=V^{[k]} \oplus V^{\prime}$. At least it must have an element with two components separately in $V^{[k]}$ and $\tilde{V}^{[k]}$, i.e. we can let this element be

$$
|x\rangle=\sum_{n=0}^{k p-1} c_{n}|n\rangle+\sum_{n^{\prime}=k p}^{\infty} b_{n^{\prime}}\left|n^{\prime}\right\rangle
$$

where there are a $c_{n} \neq 0$ and a $b_{n^{\prime}} \neq 0$ at least. By action of a^{+}on $|x\rangle$, we have a non-zero vector

$$
\begin{aligned}
& \begin{aligned}
& a^{+k p}|x\rangle=\sum_{n=0}^{k p-1} c_{n}|n+k p\rangle+\sum_{n^{\prime}=k p}^{\infty} b_{n^{\prime}}\left|n^{\prime}+k p\right\rangle \\
&=\sum_{n=0}^{\infty} c_{n}|n+k p\rangle \in V^{[k]} \\
& c_{n}=b_{n} \text { for } n=k p, k p+1, k p+2, \ldots
\end{aligned}
\end{aligned}
$$

However, since V^{\prime} is invariant under the action of representation (2), $a^{+k p}|x\rangle \in V^{\prime}$, that is to say, $V^{\prime} \cap V^{[k]} \neq\{0\}$. It is impossible because of the proposal $F=V^{\prime} \oplus V^{[k]}$. Therefore, the proof is ended.

Now, considering the invariant subspace chain

$$
F=V^{[0]} \supset V^{[1]} \supset V^{[2]} \supset \ldots \supset V^{[k]} \supset V^{[k+1]} \ldots
$$

we observe that all the subrepresentations $\rho^{[k]}$ on invariant subspaces $V^{[k]}$ are also indecomposable. Although these representations are infinite dimensional, the quotient representation $\rho^{[k, m]}$ induced by (2) on the quotient space $Q(k, m)=V^{[k]} / V^{[m]}(m>k)$:

$$
\left\{|(k, m) n\rangle=|k p+n\rangle \bmod V^{[m]} \mid n=0,1,2, \ldots,(m-k) p-1\right\}
$$

is finite dimensional and its dimension is $(m-k) p$. Using (2), we write the explicit form of $\rho^{[k m]}$:

$$
\begin{align*}
& a^{+}|(k, m) n\rangle=|(k, m) n+1\rangle \quad n=0,1,2, \ldots,(m-k) p-2 \\
& a^{+}|(k m) n\rangle=0 \quad \text { for } n=(m-k) p-1 \\
& a|(k m) n\rangle=[n]|(k m) n-1\rangle \tag{3}\\
& Q|(k m) n\rangle=q^{n}|(k, m) n\rangle .
\end{align*}
$$

Here, it is pointed out that when $m=k+1$, the representation $\rho^{[k m]}$ is irreducible. For example, for $p=3$, we obtain a 3 D irreducible representation

$$
a^{+}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{4}\\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad a=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & {[2]} \\
0 & 0 & 0
\end{array}\right) \quad Q=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & q & 0 \\
0 & 0 & q^{2}
\end{array}\right)
$$

on the quotient space $Q(k, k+1):\{(k, k+1) 0\rangle,|(k, k+1) 1\rangle,|(k, k+1) 2\rangle\}$. It is easy to check that (4) satisfies (1) by noticing $q^{3}=1$.

The above discussion is naturally generalized to the case of many bosons with the operators $a_{i}^{-}=a_{i}, a_{i}^{+}$and \hat{N}_{i} satisfying

$$
\begin{align*}
& a_{i} a_{j}^{+}=\left\{\begin{array}{l}
a_{j}^{+} a_{i} \quad \text { for } i \neq j \\
q^{-1} a_{i}^{+} a_{i}+q^{\hat{N}_{i}} \equiv q^{-1} a_{i}^{+} a_{i}+Q_{i} \quad \text { for } i \neq j
\end{array}\right. \\
& {\left[\hat{N}_{i}, a_{j}^{ \pm}\right]=\delta_{i j}\left(\pm a_{j}^{ \pm}\right) \quad\left[\hat{N}_{i}, \hat{N}_{j}\right]=\left[a_{i}^{ \pm}, a_{j}^{ \pm}\right]=0} \tag{5}
\end{align*}
$$

where $i=1,2, \ldots, l$.
Because of the indecomposable properties mentioned above, the representations of QUEA in terms of the q-deformed boson operators have new reducible structures.

3. Representations of $\mathbf{S L}_{q}(\mathbf{2})$

The q-deformed boson realizations of the generators $J_{ \pm}$and J_{3} for the QUEA SL (2) are

$$
\begin{equation*}
J_{+}=a_{1}^{+} a_{2} \quad J_{-}=a_{2}^{+} a_{1} \quad J_{3}=\hat{N}_{1}-\hat{N}_{2} . \tag{6}
\end{equation*}
$$

On the two-state q-deformed Fock space

$$
\left.F_{2}:\left\{\left|n_{1}, n_{2}\right\rangle=a_{1}^{+n_{1}} a_{2}^{+n_{2}}|0\rangle\left|n_{1}, n_{2} \in \mathbb{Z}_{+}, a_{i}\right| 0\right\rangle=\hat{N}_{i}|0\rangle=0, i=1,2\right\}
$$

the representation of $\mathrm{SL}_{q}(2)$ [14],

$$
\begin{align*}
& J_{+}\left|n_{1}, n_{2}\right\rangle=\left[n_{2}\right]\left|n_{1}+1, n_{2}-1\right\rangle \\
& J_{-}\left|n_{1} n_{2}\right\rangle=\left[n_{1}\right]\left|n_{1}-1, n_{2}+1\right\rangle \tag{7}\\
& J_{3}\left|n_{1}, n_{2}\right\rangle=\left(n_{1}-n_{2}\right)\left|n_{1}, n_{2}\right\rangle
\end{align*}
$$

is obtained from the realization (6). On the invariant subspace

$$
V_{2}^{[N]}:\left\{f_{N}(n)=|n, N-n\rangle \mid n=0,1,2, \ldots, N \in \mathbb{Z}\right\}
$$

the above representation subduces a $(N+1)$-dimensional representation Γ :

$$
\begin{align*}
& J_{+} f_{N}(n)=[N-n] f_{N}(n+1) \\
& J_{-} f_{N}(n)=[n] f_{N}(n-1) \tag{8}\\
& J_{3} f_{N}(n)=(2 n-N) f_{N}(n)
\end{align*}
$$

which is irreducible for the generic case.
However, for the non-generic case, there are two singular vectors $f_{N}(\alpha p)$ and $f_{N}(N-\beta p)$ such that

$$
\begin{equation*}
J_{-} f_{N}(\alpha p)=0, J_{+} f_{N}(N-\beta p)=0 \tag{9}
\end{equation*}
$$

for two positive integers α and $\beta \leqslant N / p$. It follows from (8) and (9) that the subspaces

$$
U_{\alpha}=\left\{f_{N}(\alpha p+n) \mid n=0,1,2, \ldots, N-\alpha p\right\}
$$

and

$$
W_{\beta}=\left\{f_{N}(N-\beta p-k) \mid k=0,1,2, \ldots, N-\beta p\right\}
$$

are invariant; and $U_{\alpha^{\prime}}$ and $W_{\beta^{\prime}}\left(\alpha^{\prime}>\alpha, \beta^{\prime}>\beta\right)$ are respectively the invariant subspaces of U_{α} and W_{β}. Thus, the representation (8) and its subrepresentations on U_{α} and W_{β} are reducible in the non-generic case.

According to the singular vectors $f_{N}(\alpha p)$ and $f_{N}(N-\beta p)$, there are three types of decomposition for the representation space $V_{2}^{[N]}$ relating to the characters of $U_{\alpha} \cap \boldsymbol{W}_{\beta}$.

Type I. When $\alpha p-1>N-\beta p, U_{\alpha} \cap W_{\beta}=\{0\}$, the representation (8) is indecomposable. This can be proved by the same method as that for the proof of theorem 1 .

Type II. When $\alpha p-1=N-\beta p$, we have $f_{N}(\alpha p-1)=f_{N}(N-\beta p)$ and

$$
\begin{aligned}
& j_{+} f_{N}(\alpha p-1)=j_{+} f_{N}(N-\beta p)=0 \\
& J_{-} f_{N}(\alpha p)=0
\end{aligned}
$$

that is to say,

$$
V_{2}^{[N]}=U_{\alpha} \oplus W_{\beta} \quad U_{\alpha} \cap W_{\beta}=\{0\} .
$$

Therefore, the representation (7) is decomposed into a direct sum of two subrepresentations separately on U_{α} and W_{β}, namely, the representation (8) is completely reducible.

Type III. When $\alpha p-1<N-\beta p$,

$$
U_{\alpha} \cap W_{\beta}=\left\{f_{N}(\alpha p), f_{N}(\alpha p+1), f_{N}(p+2), \ldots, f_{N}(N-\beta p)\right\}
$$

is a smaller invariant subspace, which does not have an invariant complementary space. Thus, the representation (7) is also indecomposable.

Now, as examples, we discuss the case of $p=3$ for $N=3,4,5$ and 6 . In terms of the matrix units $E_{i j}$ such that

$$
\left(E_{i j}\right)_{k l}=\delta_{i k} \delta_{j l}
$$

we write the explicit matrices of the representations for $N=3$,

$$
\begin{align*}
& J_{+}=[2] E_{3,2}+E_{4,3} \\
& J_{-}=E_{1,2}+[2] E_{2,3} \tag{10}\\
& J_{3}=-\frac{3}{2} E_{1,1}-\frac{1}{2} E_{2,2}+\frac{1}{2} E_{3,3}+\frac{3}{2} E_{4,4}
\end{align*}
$$

for $N=4$,

$$
\begin{align*}
& J_{+}=E_{2,1}+[2] E_{4,3}+E_{5,4} \\
& J_{-}=E_{1,2}+[2] E_{2,3}+E_{4,5} \tag{11}\\
& J_{3}=-2 E_{1,1}-E_{2,2}+E_{4,4}+2 E_{5,5}
\end{align*}
$$

for $N=5$,

$$
\begin{align*}
& J_{+}=[2] E_{2,1}+E_{3,2}+[2] E_{5,4}+E_{6,5} \\
& J_{-}=E_{1,2}+[2] E_{2,3}+E_{4,5}+[2] E_{5,6} \tag{12}\\
& J_{3}=-\frac{5}{2} E_{1,1}-\frac{3}{2} E_{2,2}-\frac{1}{2} E_{3,3}+\frac{1}{2} E_{4,4}+\frac{3}{2} E_{5,5}+\frac{5}{2} E_{6,6}
\end{align*}
$$

and for $N=6$,

$$
\begin{align*}
& J_{+}=[2] E_{3,2}+E_{4,3}+[2] E_{6,5}+E_{7,6} \\
& J_{-}=E_{1,2}+[2] E_{2,3}+[2] E_{4,5}+E_{5,6} \tag{13}\\
& J_{3}=-3 E_{1,1}-2 E_{2,2}-E_{3,3}+E_{5,5}+2 E_{6,6}+3 E_{7,7}
\end{align*}
$$

The decomposition of these representations is illustrated in figures $1(a-d)$ where the upward and downward arrows denote the actions of J_{+}and J_{-}separately. It is easily observed from figure 1 that the representations (10) and (11) possess the reducibility of type I; the representations (12) and (13) possess reducibilities of type II and type III separately.

Figure 1. Reductions of representations for (a) $N=3$, (b) $N=4$, (c) $N=5$ and (d) $N=6$.

4. Lusztig operators

According to the pbw [10] for QUEA, the basis for $\mathrm{SL}_{q}(2)$ can be chosen as

$$
u(m, n, k)=J_{+}^{m} J_{-}^{n} J_{3}^{k} \quad m, n, k \in \mathbb{Z}_{+} .
$$

For any $x \in \mathrm{SL}_{q}(2)$,

$$
x=\sum_{m, n, k=0}^{\infty} C_{m n k} u(m, n, k)
$$

where $C_{m n k}(\in \mathbb{C})$ usually are not infinite. We can regard x as an operator on a representation space V. For a given representation space V of $\mathrm{SL}_{q}(2)$, we extend $\mathrm{SL}_{q}(2)$ to include a class of operators

$$
e=\sum_{m, n, k=0}^{\infty} E_{m n k} u(m, n, k) \quad E_{m, n k} \in \mathbb{C}
$$

such that their actions on V possess finite limit, where some coefficients $E_{m n k}$ must be infinite. The extended $\mathrm{SL}_{q}(2)$ is denoted by $\widehat{\mathrm{SL}}_{q}(2)$ and a representation of $\mathrm{SL}_{q}(2)$ is still a representation of $\overline{S L}_{q}(2)$, but a representation is not definitely reducible for $\widehat{S L}_{q}(2)$ even if it is reducible for $\mathrm{SL}_{q}(2)$.

According to Lusztig [11], we introduce the Lusztig operators

$$
L_{ \pm}=\lim _{q^{n} \rightarrow 1}\left[(1 /[p]!) J_{ \pm}^{p}\right]
$$

to extend $\widehat{\mathrm{SL}}_{q}(2)$ for the representation space $V_{2}^{[N]}$. We have the following theorem.
Theorem 2. The actions of the Lusztig operators $L_{ \pm}$on the space $V_{2}^{[N]}$ are finite and
$\tilde{L}_{-} f_{N}(n)=\left\{\begin{array}{l}0 \quad n<p \\ \alpha f_{N}(n-p)\end{array} \quad n=\alpha p+n^{\prime}, \mathbb{Z}_{+} \ni \alpha \geqslant 1,0 \leqslant n^{\prime} \leqslant p-1\right.$
$L_{+} f_{N}(n)=\left\{\begin{array}{l}0 \quad n>N-p \\ \beta f_{N}(n+p) \quad N-n=\beta p+m, \mathbb{Z}_{+} \ni \beta \geqslant 1,0 \leqslant m^{\prime} \leqslant p-1\end{array}\right.$
Proof. Using (7) and

$$
[n]=\left[\alpha p+n^{\prime}\right]=\left[n^{\prime}\right] \quad \lim _{q^{\prime} \rightarrow 1}([\alpha P] /[p])=\alpha
$$

we obtain $J^{p} f_{N}(n)=0$ when $n<p$; when $n \geqslant p$,

$$
\begin{aligned}
J_{-} f_{N}(n)=[& \left.\alpha p+n^{\prime}\right]\left[\alpha p+n^{\prime}-1\right]\left[\alpha p+n^{\prime}-2\right] \ldots \\
& \times\left[\alpha p+n^{\prime}-p+2\right]\left[\alpha p+n^{\prime}-p+1\right] f_{N}(n-p) \\
= & {\left[n^{\prime}\right]\left[n^{\prime}-1\right]\left[n^{\prime}-2\right] \ldots[1][\alpha p][p-1][p-2] \ldots\left[n^{\prime}+2\right]\left[n^{\prime}+1\right] f_{N}(n-p) } \\
= & {[\alpha p][p-1]!f_{N}(n-p)=0 . }
\end{aligned}
$$

Then,

$$
L_{-} f_{N}(n)=\lim _{q^{p} \rightarrow 1}([\alpha p] /[p]) f_{N}(n-p)=\alpha f_{N}(n-p)
$$

Using the same method, we prove (15).
Now, according to this theorem, we analyse decompositions and reducibilities of the representation (7) as a representation of $\widehat{\mathrm{SL}}_{q}(2)$. Because of the actions of $L_{ \pm}$on $f_{N}(n)$ such that
$L_{-} f_{N}(\alpha p)=f_{N}[(\alpha-1) p]$
$L_{+} f_{N}(N-\beta p)=\left(\alpha^{\prime}-\beta\right) f_{N}[N-(\beta-1) p] \quad N=\alpha^{\prime} p+N^{\prime}, 0 \leqslant N^{\prime} \leqslant p-1$
the subspaces U_{α} and W_{β} are no longer invariant for $\widehat{\mathrm{SL}}_{q}(2)$. As follows, we make a concrete analysis for the reducibilities and decomposations of representations (10)(13).
(i) In representation (10), there are two $1 \mathrm{D} \mathrm{SL}_{q}(2)$-invariant subspaces, $\left\{f_{3}(0)\right\}$ and $\left\{f_{3}(3)\right\}$, but they transform into each other under the actions of $L_{ \pm}$. Hence, only $\left\{f_{3}(0), f_{3}(3)\right\}$ is an $\widehat{\mathrm{SL}}_{q}(2)$-invariant subspace;
(ii) In representation (11), there two $2 \mathrm{D} \mathrm{SL}_{q}(2)$-invariant subspaces, $\left\{f_{4}(0), f_{4}(1)\right\}$ and $\left\{f_{4}(3), f_{4}(4)\right\}$, but they transform into each other under the actions of $L_{ \pm}$. Hence, their union $\left\{f_{4}(0), f_{4}(1), f_{4}(3), f_{4}(4)\right\}$ is $\widehat{\mathrm{SL}}_{q}(2)$ invariant.
(iii) In representation (12), there are two 3D $\mathrm{SL}_{q}(2)$-invariant subspaces, $\left\{f_{5}(0), f_{5}(1), f_{5}(2)\right\}$ and $\left\{f_{5}(3), f_{5}(4), f_{5}(5)\right\}$, and

$$
V_{2}^{[5]}=\left\{f_{5}(0), f_{5}(1), f_{5}(2)\right\} \oplus\left\{f_{5}(3), f_{5}(4), f_{5}(5)\right\}
$$

Thus, as a representation of $\mathrm{SL}_{q}(2),(12)$ is completely reducible. However, due to the actions of $L_{ \pm}$, the whole space $V_{2}^{[5]}$ carries an irreducible representation of $\widehat{\mathrm{SL}}_{q}(2)$;

Figure 2. Representations of $\widehat{S L}_{4}(2)$ for (a) $N=3,(b) N=4,(c) N=5$ and $(d) N=6$.
(iv) In representation (13), there are three ${ }_{1 \mathrm{D}} \mathrm{SL}_{q}(2)$-invariant subspaces, $\left\{f_{6}(0)\right\}$, $\left\{f_{6}(3)\right\}$ and $\left\{f_{6}(6)\right\}$. They transform into one another under the actions of $L_{ \pm}$. Hence, they span a $3 \mathrm{D} \mathrm{SL}_{q}(2)$-invariant subspace.

The above is illustrated in figure $2(a-d)$ where the broken upward and downward arrows denote the actions of L_{+}and L_{-}separately.

5. Representations of $\mathbf{S L}_{q}(l)$: general discussion

In this and the following sections, we generalize the method for $\mathrm{SL}_{q}(2)$ in the last section to the general case of $\mathrm{SL}_{q}(l)$ when q is a root of unity. As we well know, $\mathrm{SL}_{q}(l)$ $(l \geqslant 3)$ are associated with the standard R-matrices for the Yang-Baxter equation as well as $\mathrm{SL}_{q}(2)$ in the standard case that the usual irreducible representations are used
[4]. Recently, we obtained new R-matrices besides the standard ones by constructing and studying the new boson representations of $\mathrm{SL}_{q}(2)$ in detail [29]. A similar situation should naturally apply to $\mathrm{SL}_{q}(l)(l \geqslant 3)$. Thus, it is necessary to provide sufficient details of the new representations of $\mathrm{SL}_{q}(l)$ for the construction of the new R-matrices associated with $\mathrm{SL}_{q}(l)$ as follows.

The q-deformed boson realization of QUEA $\mathrm{SL}_{q}(l)$ is

$$
\begin{align*}
& H_{i}=\hat{N}_{i}-\hat{N}_{i+1} \tag{16}\\
& E_{i}=a_{i}^{+} a_{i+1} \quad F_{i}=a_{i+1}^{+} a_{i}, i=1,2, \ldots, l-1 .
\end{align*}
$$

The basic relations (5) ensure that

$$
\begin{align*}
& {\left[H_{i}, H_{j}\right]=0} \\
& {\left[H_{i}, E_{j}\right]=\alpha_{i j} E_{j} \quad\left[H_{i}, F_{j}\right]=-\alpha_{i j} F_{j}} \tag{17}\\
& {\left[E_{i}, F_{j}\right]=\delta_{i j}\left[H_{j}\right]} \\
& G_{j}^{2} G_{j \pm 1}-\left(q+q^{-1}\right) G_{j} G_{j \pm 1} G_{j}+G_{j \pm 1} G_{j}^{2}=0
\end{align*}
$$

where $\alpha_{i j}=2 \delta_{i j}-\delta_{i j+1}-\delta_{i j-1}$ is the element of the Cartan matrix α of A_{i-1} and $G_{j}=E_{i}$ or F_{i}.

On the q-deformed Fock space

$$
\begin{gathered}
F_{l}: \quad\left\{|\boldsymbol{m}\rangle=\left|m_{1}, m_{2}, \ldots, m_{l}\right\rangle=a_{1}^{+m_{1}} a_{2}^{+m_{2}} a_{3}^{+m_{3}} \ldots a_{l}^{+m_{i}}|0\rangle\right. \\
\left.a_{i}|0\rangle=\hat{N}_{i}|0\rangle=0, m_{i} \in \mathbb{Z}_{+}, i=1,2, \ldots, l\right\}
\end{gathered}
$$

we obtain a representation of $\mathrm{SL}_{q}(I) 14$

$$
\begin{align*}
& H_{i}|\boldsymbol{m}\rangle=\left(m_{i}-m_{i+1}\right)|\boldsymbol{m}\rangle \\
& E_{i}|\boldsymbol{m}\rangle=\left[m_{i+1}\right]\left|\boldsymbol{m}+\boldsymbol{e}_{i}-\boldsymbol{e}_{i+1}\right\rangle \tag{18}\\
& F_{i}|\boldsymbol{m}\rangle=\left[m_{i}\right]\left|\boldsymbol{m}+\boldsymbol{e}_{i+1}-\boldsymbol{e}_{i}\right\rangle \quad i=1,2, \ldots, l-1
\end{align*}
$$

where $\boldsymbol{m}=\left(m_{1}, m_{2}, \ldots, m_{l}\right) \in \mathbb{Z}_{+}^{\prime}$ and

$$
e_{1}=(1,0, \ldots, 0), e_{2}=(0,1, \ldots, 0), \ldots, e_{t}=(0,0, \ldots, 1)
$$

are linear-independent unit vectors in $\mathbb{Z}^{!}$.
It follows from (18) that the vector $|\boldsymbol{m}\rangle$ for the representation (18) possesses a certain weight $\Lambda=\left(\Lambda_{1}, \Lambda_{2}, \ldots, \Lambda_{t-1}\right)=\left(m_{1}-m_{2}, m_{2}-m_{3}, \ldots, m_{1-1}-m_{1}\right)$ and different labels $\left(m_{1}, m_{2}, \ldots, m_{l}\right)$ and $\left(m_{1}+c, m_{2}+c, \ldots, m_{l}+c\right)(c \in \mathbb{C})$ correspond to the same weight Λ. The latter is because the representation given by (18) is reducible. In fact, the sum $\Sigma_{i=1}^{\prime} m_{i}$ of the labels m_{i} is invariant and then $V_{i}^{[N]}:\left\{|m\rangle \mid \Sigma_{i=1}^{\prime} m_{i}=N\right\}$ for a fixed $N \in \mathbb{Z}^{+}$span an invariant subspace for the representation (18). Constrained on the invariant subspace $V_{l}^{[N]}$, the m such that $\Sigma_{i=1}^{l} m_{i}=N$ uniquely label the state vectors and define the corresponding weight $\Lambda=\left(m_{1}-m_{2}, m_{2}-m_{3}, \ldots, m_{l-1}-m_{l}\right)$.

For convenience, in the analysis of representation reduction as follows, we introduce new labels $\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \lambda_{t-1}\right)$ where $\lambda_{i-1}=0,1,2, \ldots, \lambda_{i}$ for a given $\lambda_{i}\left(\lambda_{0}=0, \lambda_{1}=N ; i=\right.$ $1,2, \ldots, l$), which are equivalent to the constrained labels m. Then, we rewrite the basis
$f_{N}(\boldsymbol{\lambda})=f_{N}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{1-1}\right)=\left|\lambda_{1}-\lambda_{0}, \lambda_{2}-\lambda_{1}, \ldots, \lambda_{i-1}-\lambda_{t-2}, \lambda_{1}-\lambda_{1-1}\right\rangle$
for the invariant subspace $V_{1}^{[N]}$ where $\lambda_{0}=0$ and $\lambda_{l}=N$. On the space $V_{l}^{[N]}$ the representation (18) defines a finite-dimensional subrepresentation

$$
\begin{align*}
& E_{i} f_{N}(\boldsymbol{\lambda})=\left[\lambda_{i+1}-\lambda_{i}\right] f_{N}\left(\boldsymbol{\lambda}+\boldsymbol{e}_{i}\right) \tag{19a}\\
& F_{i} f_{N}(\boldsymbol{\lambda})=\left[\lambda_{i}-\lambda_{i-1}\right] f_{N}\left(\boldsymbol{\lambda}-\boldsymbol{e}_{i}\right) \tag{19b}\\
& H_{i} f_{N}(\boldsymbol{\lambda})=\left(2 \lambda_{i}-\lambda_{i+1}-\lambda_{i-1}\right) f_{N}(\boldsymbol{\lambda}) \tag{19c}
\end{align*}
$$

whose dimension is

$$
\begin{equation*}
d(N, l)=\frac{(N+l-1)!}{(l-1)!N!} \tag{20}
\end{equation*}
$$

Here, $\boldsymbol{\lambda}$ is in a domain $\Delta^{l-1}:\left\{\boldsymbol{\lambda}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l-1}\right) \in \mathbb{Z}^{l-1} \mid \lambda_{0}=0, \lambda_{N}=N, \lambda_{i-1}=\right.$ $0,1,2, \ldots, \lambda_{i}$ for a given $\left.\lambda_{i}, i=0,1,2, \ldots, l\right\}$ of \mathbb{Z}^{i-1} and $e_{i} \in \mathbb{Z}^{l-1}$. For the generic case, (19) is irreducible and has the highest weight $\bar{\Lambda}=(N, 0,0, \ldots, 0)$ corresponding to the highest-weight vector $f_{N}(N, N, \ldots, N)=|N, 0, \ldots, 0\rangle$. Thus, the representation (19) is a completely symmetrized representation [14].

Now, we consider the non-generic case. Because each vector $f_{N}(\boldsymbol{\lambda})$ in the space V_{1}^{N} corresponds to a sole lattice point $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t-1}\right) \in \Delta^{I-1} \subset \mathbb{Z}^{I-1}$, we can describe the action of representation (19) on the basis $f_{N}(\boldsymbol{\lambda})$ by the move of the lattice point λ. Define a hyperplane

$$
\pi_{i}^{\alpha}: \quad\left\{\lambda \in \mathbb{Z}_{+}^{t-1} \mid \lambda_{i+1}-\lambda_{i}=\alpha p\right\}
$$

in the lattice space \mathbb{Z}^{1-1}. It cuts a domain Δ_{i}^{α} :

$$
\left\{\lambda \in \mathbb{Z}^{I-1} \mid \lambda_{i+1}-\lambda_{i} \geqslant \alpha p\right\}
$$

out of Δ^{t-1}. Then, we have the following theorem.
Theorem 3. All the vectors $f_{N}(\lambda)$ in V_{i}^{N} corresponding to all the lattices in the domain Δ_{i}^{α} span an invariant subspace $V_{\alpha i}$ of V_{l}^{N} under the action of representation (19).

Proof. It follows from (19a) and (19b) that

$$
\begin{align*}
E_{i+1} f_{N}(\boldsymbol{\lambda})= & {\left[\lambda_{i+2}-\lambda_{i+1}\right] f_{N}\left(\boldsymbol{\lambda}+\boldsymbol{e}_{i+1}\right) } \tag{21a}\\
& F_{i+1} f_{N}(\boldsymbol{\lambda})=\left[\lambda_{i+1}-\lambda_{i}\right] f_{N}\left(\boldsymbol{\lambda}-\boldsymbol{e}_{i+1}\right) \tag{21b}
\end{align*}
$$

Define the subspace $W(i, k):\left\{f_{N}(\boldsymbol{\lambda}) \in V_{i}^{N} \mid \lambda_{i+1}-\lambda_{i}=k\right\}$. Then,

$$
V_{\alpha i}=\sum_{k=\alpha p}^{\infty} \oplus(i, k) .
$$

From (21) and (19) we observe that, for $f_{N}(\lambda) \in W(i, k)(k \geqslant \alpha p)$,

$$
\begin{aligned}
& E_{i+1} f_{N}(\boldsymbol{\lambda}) \in W(i, k+1) \subset V_{\alpha i} \\
& F_{i} f_{N}(\boldsymbol{\lambda}) \in W(i, k+1) \subset V_{\alpha i} \\
& E_{j} f_{N}(\boldsymbol{\lambda}) \in W(i, k) \subset V_{\alpha i} \\
& F_{j} f_{N}(\boldsymbol{\lambda}) \in W(i, k) \subset V_{\alpha i} \quad \text { for } j \neq i, i+1
\end{aligned}
$$

that is to say, the space $V_{\alpha i}$ is invariant under the actions of E_{j}, f_{j}, E_{i+1} and $F_{i}(j \neq i, i+1)$.

Considering that all the vectors $f_{N}(\boldsymbol{\lambda})$ corresponding to all the lattice points $\boldsymbol{\lambda}$ in the hyperplane π_{i}^{α} satisfy

$$
\left[\lambda_{i+1}-\lambda_{i}\right]=[\alpha p]=0
$$

we have

$$
E_{i} W(i, \alpha p)=0 \quad F_{i+1} W(i, \alpha p)=0
$$

and

$$
\begin{aligned}
& E_{i} W(i, k) \subset W(i, k-1) \subset V_{\alpha i} \\
& F_{i+1} W(i, k) \subset W(i, k-1) \subset V_{\alpha i} \quad k=\alpha p+1, \alpha p+2, \ldots
\end{aligned}
$$

namely, the subspace $V_{\alpha i}$ is also invariant under the actions of E_{i} and F_{i+1}, and the theorem is proved.

According to theorem 3, there are many invariant subspaces $V_{\alpha i}$ corresponding to different hyperplanes Π_{i}^{α} for different is and $\alpha \mathrm{s}$. Like the analysis of $\mathrm{SL}_{q}(2)$, the discussion of the reducibility of representation (19) results from the situations of the cross $V_{\alpha i} \cap V_{\alpha^{\prime} i^{\prime}}\left(\alpha, i \neq \alpha^{\prime}, i^{\prime}\right)$. In the following section, we will use $\mathrm{SL}_{q}(3)$ as an example to discuss this problem in detail.

6. Representations of SL_{q} (3)

When $p=3$, from (19), we obtain a representation of $\mathrm{SL}_{q}(3)$:

$$
\begin{align*}
& E_{1} f_{N}\left(\lambda_{1}, \lambda_{2}\right)=\left[\lambda_{2}-\lambda_{1}\right] f_{N}\left(\lambda_{1}+1, \lambda_{2}\right) \\
& E_{2} f_{N}\left(\lambda_{1}, \lambda_{2}\right)=\left[N-\lambda_{2}\right] f_{N}\left(\lambda_{1}, \lambda_{2}+1\right) \\
& F_{1} f_{N}\left(\lambda_{1}, \lambda_{2}\right)=\left[\lambda_{1}\right] f_{N}\left(\lambda_{1}-1, \lambda_{2}\right) \\
& F_{2} f_{N}\left(\lambda_{1}, \lambda_{2}\right)=\left[\lambda_{2}-\lambda_{1}\right] f_{N}\left(\lambda_{1}, \lambda_{2}-1\right) \tag{22}\\
& H_{1} f_{N}\left(\lambda_{1}, \lambda_{2}\right)=\left(2 \lambda_{1}-\lambda_{2}\right) f_{N}\left(\lambda_{1}, \lambda_{2}\right) \\
& H_{2} f_{N}\left(\lambda_{1}, \lambda_{2}\right)=\left(2 \lambda_{2}-\lambda_{1}-N\right) f_{N}\left(\lambda_{1}, \lambda_{2}\right)
\end{align*}
$$

where $\lambda_{2}=0,1,2, \ldots, N ; \lambda_{1}=0,1,2, \ldots, \lambda_{2}$ for a given λ_{2}. This representation is irreducible for the generic case.

In order to analyse the reducibility and decomposition of this representation when q is a root of unity, we introduce the following 2D lattice diagram (figure 3) to describe

Figure 3. Diagram for the representation space V_{3}^{N} and the actions of representation (22).
this representation. Here, each lattice point in $\triangle \mathrm{OAB}$ denotes a weight vector $f_{N}(\lambda)$; the upward, downward, right and left arrows denote the actions of E_{1}, F_{1}, E_{2} and F_{2} respectively.

The fact that $[k p]=0$ for $k \in \mathbb{Z}_{+}$defines three character lines:

$$
\begin{array}{lll}
l_{1}: & \lambda_{2}-\lambda_{1}=\alpha p & \\
l_{2}: & N-\lambda_{2}=\beta p & \\
l_{3}: & \lambda_{1}=\gamma p & \alpha, \beta, \nu \in \mathbb{Z}_{+}
\end{array}
$$

which depict the reducibility of the representation (22). The three lines cut out of $V_{3}^{N}:\left\{f_{N}\left(\lambda_{1}, \lambda_{2}\right)\right\}$ three kinds of invariant subspaces,

$$
\begin{array}{ll}
V_{\alpha}(3): & \left\{f_{N}\left(\lambda_{1}, \lambda_{2}\right) \mid \lambda_{2}-\lambda_{1} \geqslant \alpha p\right\} \\
U_{\beta}(3): & \left\{f_{N}\left(\lambda_{1}, \lambda_{2}\right) \mid N-\lambda_{2} \geqslant \beta p\right\} \\
W_{\gamma}(3): & \left\{f_{N}\left(\lambda_{1}, \lambda_{2}\right) \mid \lambda_{1} \geqslant \gamma p\right\}
\end{array}
$$

with the singular vectors $f_{N}\left(\lambda_{1}, \lambda_{1}+\alpha p\right), f_{N}\left(\lambda_{1}, N-\beta p\right)$ and $f_{N}\left(\gamma p, \lambda_{2}\right)$ respectively. These vectors satisfy

$$
\begin{aligned}
& E_{1} f_{N}\left(\lambda_{1}, \lambda_{1}+\alpha p\right)=F_{2} f_{N}\left(\lambda_{1}, \lambda_{1}+\alpha p\right)=0 \\
& E_{2} f_{N}\left(\lambda_{1}, N-\beta p\right)=0 \\
& F_{2} f_{N}\left(\gamma p, \lambda_{2}\right)=0
\end{aligned}
$$

The bases for these invariant subspaces $V_{\alpha}(3), U_{\beta}(3)$ and $W_{\gamma}(3)$ respectively correspond to the lattice points in the shadowed domains of figures $4(a-c)$.

Figure 4. Diagrams for three types of invariant subspaces.

Considering that a cross of any two of these invariant subspaces is still invariant, we can obtain some lower-dimensional representations subduced by (22) on the following invariant subspaces:

$$
\begin{aligned}
& Q_{1}=V_{\alpha}(3) \cap U_{\beta}(3) \cap W_{\gamma}(3) \\
& Q_{2}=V_{\alpha}(3) \cap U_{\beta}(3) \\
& Q_{3}=U_{\beta}(3) \cap W_{\gamma}(3) \\
& Q_{4}=W_{\gamma}(3) \cap V_{\alpha}(3) .
\end{aligned}
$$

There are various situations of reducibility of spaces that are represented in figures $5(a-f)$. Here, the shadowed domains correspond to invariant subspaces resulting from the crosses of original invariant subspaces.

Now, we calculate two representations of $\mathrm{SL}_{q}(3)$ from (22). When $p=3$ and $N=4$, we have a 15 D indecomposable representation:
$E_{1}=E_{6,2}+E_{9,5}+E_{13,11}+E_{15,14}+[2]\left(E_{7,3}+E_{11,8}+E_{14,12}\right)+E_{10,7}$
$F_{1}=E_{2,6}+E_{3,7}+E_{5,9}+E_{4,8}+[2]\left(E_{7,10}+E_{8,11}+E_{9,12}\right)+E_{14,15}$

Figure 5. The invariant subspaces of $\mathrm{SL}_{4}(3):(a) Q_{1}=Q_{2}=Q_{3}=Q_{4}=\{0\} ;(b) Q_{1}=Q_{3}=$ $Q_{4}=\{0\}, Q_{2} \neq\{0\} ;(c) Q_{1}=Q_{2}=Q_{4}=\{0\}, Q_{3} \neq\{0\} ;(d) Q_{1}=Q_{2}=Q_{3}=\{0\}, Q_{4} \neq\{0\} ;$ (e) $Q_{2}=Q_{3}=Q_{4}=\{0\}, Q_{1} \neq\{0\} ;(f) Q_{1}=\{0\}, Q_{2}, Q_{3}, Q_{4} \neq\{0\}$.

$$
\begin{align*}
& E_{2}= E_{2,1}+E_{9,8}+E_{12,11}+E_{14,13}+[2]\left(E_{3,4}+E_{8,7}+E_{11,10}\right)+E_{5,4} \\
& F_{2}= E_{1,2}+E_{4,5}+E_{6,7}+E_{10,11}+[2]\left(E_{2,3}+E_{7,8}+E_{11,12}\right)+E_{13,14} \tag{23}\\
& H_{1}=-E_{2,2}-2 E_{3,3}-3 E_{4,4}-4 E_{5,5}+E_{6,6}-E_{8,8}-2 E_{9,9}+2 E_{10,10}+E_{11,11} \\
& \quad \quad 3 E_{13,13}+2 E_{14,14}+E_{15,15} \\
& \quad+2 E_{12,12}-E_{13,13}+E_{14,14} .
\end{align*}
$$

From its representation diagram (figure 6), we observe that there exist three invariant subspaces

$$
\begin{array}{ll}
S_{1}(3): & \left\{f_{4}(0,0), f_{4}(0,1), f_{4}(1,1)\right\} \\
S_{2}(3): & \left\{f_{4}(0,3), f_{4}(0,4), f_{4}(1,4)\right\} \\
S_{3}(3): & \left\{f_{4}(3,3), f_{4}(3,4), f_{4}(4,4)\right\}
\end{array}
$$

on which the representation (23) gives a 3D irreducible subrepresentation.
When $p=3$ and $N=5$, we obtain a 21D indecomposable representation:

$$
\begin{align*}
& E_{1}=E_{7,2}+E_{10,5}+E_{12,8}+E_{15,11}+E_{16,13}+E_{19,17}+E_{21,20} \\
&+[2]\left(E_{8,3}+E_{11,6}+E_{13,9}+E_{17,14}+E_{20,18}\right) \\
& F_{1}=E_{2,7}+E_{3,8}+E_{4,9}+E_{5,10}+E_{6,11}+E_{17,19}+E_{18,20} \\
&+[2]\left(E_{8,12}+E_{9,13}+E_{10,14}+E_{11,15}+E_{20,21}\right) \\
& E_{2}=E_{3,2}+E_{6,5}++E_{8,7}+E_{11,10}+E_{15,14}+E_{18,17}+E_{20,19} \\
& \quad[2]\left(E_{2,1}+E_{5,4}+E_{10,9}+E_{14,13}+E_{17,16}\right) \tag{24}\\
& F_{2}=E_{1,2}+E_{4,5}+E_{7,8}+E_{10,11}+E_{12,13}+E_{16,17}+E_{19,20} \\
& \quad[2]\left(E_{2,3}+E_{5,6}+E_{8,9}+E_{13,14}+E_{17,18}\right) \\
& H_{1}=-E_{2,2}- 2 E_{3,3}-3 E_{4,4}-4 E_{5,5}-5 E_{6,6}+E_{7,7}-E_{9,9}-2 E_{10,10}-3 E_{11,11}+2 E_{12,12} \\
& \quad+E_{13,13}-E_{15,15}+3 E_{16,16}+E_{18,18}+4 E_{19,19}+3 E_{20,20}+5 E_{21,21} \\
& \quad-3 E_{12,12}-E_{13,13}+E_{14,14}+3 E_{15,15}-2 E_{16,16}+2 E_{18,18}-E_{19,19}+E_{20,20} .
\end{align*}
$$

Figure 6. 15D indecomposable representation.

Figure 7. 21D indecomposable representation.

From its representation diagram (figure 7) we observe that there are three 6D invariant subspaces

$$
\begin{array}{ll}
S_{1}(6): & \left\{f_{5}(0,0), f_{5}(0,1), f_{5}(0,2), f_{5}(1,1), f_{5}(1,2), f_{5}(2,2)\right\} \\
S_{2}(6): & \left\{f_{5}(0,3), f_{5}(0,4), f_{5}(0,5), f_{5}(1,4), f_{5}(1,5), f_{5}(2,5)\right\} \\
S_{3}(6): & \left\{f_{5}(3,3), f_{5}(3,4), f_{5}(3,5), f_{5}(4,4), f_{5}(4,5), f_{5}(5,5)\right\}
\end{array}
$$

on which the representation (24) subduces the 6D irreducible representations.
Finally, we point out that the problem will become very complicated when the Lusztig operators

$$
\frac{E_{1}^{p}}{[p]!} \quad \frac{E_{2}^{p}}{[p]!} \quad \frac{F_{1}^{p}}{[p]!} \quad \frac{F_{2}^{p}}{[p]!}
$$

are introduced to extend $\mathrm{SL}_{q}(3)$. Some details concerning this problem will be published elsewhere.

Acknowledgments

The authors thank F Smirnov and L A Takhtajian for their stimulating discussions.

References

[1] Drinfeld V G 1986 Proc. IMC (Berkely) p 798
[2] Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11 247; 1986 Commun. Math. Phys. 102 537
[3] Faddeev L D, Reshetikhin N Yu and Takhtajian L A 1987 Quantization of Lie group and Lie algebra Preprint LOMI
[4] Reshetikhin N Yu 1987 Preprints E-4, E-11 LOMI Kirillov A N and Reshetikhin N Yu 1988 Preprint LOMI
[5] Takhtajian L A 1991 Lecture on quantum group Nankai Lectures on Mathematical Physics ed M L Ge (Singapore: World Scientific)
[6] Majid S 1990 Int. J. Mod. Phys. A 51
[7] Yang C N 1967 Phys. Rev. Lett. 191312 Baxter R J 1982 Exactly Solvable Models in Statistical Mechanics (London: Academic)
[8] Yang C N and Ge M L (ed) 1989 Braid Group, Knot Theory and Statistical Mechanics (Singapore: World Scientific)
[9] Lusztig G 1988 Adv. Math. 79237
[10] Rosso M 1988 Commun. Math. Phys. 117 581; 1989 Commun. Math. Phys. 124307
[11] Lusztig G 1989 Contemp. Math. 8259
[12] Roche P and Arnaudon D 1989 Lett. Math. Phys. 17295
[13] Beidenharn L G 1989 J. Phys, A: Math. Gen. 22 L873
[14] Sun C P and Fu H C 1989 J. Phys. A: Math. Gen. 22 L983
[15] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224551
[16] Sun C P 1987 J. Phys. A: Math. Gen. 20 4551, 5823, L1157
[17] Sun C P and Fu H C 1990 Nuovo Cimento B 1151
[18] Fu H C and Sun C P 1990 J. Math. Phys. 31217
[19] Hayashi T 1990 Commun. Math. Phys. 127129
[20] Sun C P and Fu H C 1990 Commun. Theor. Phys. 19217
[21] Chaichian M and Kulish P 1990 Phys. Lett. 234B 291
Chaichian M, Kulish P and Kukierski J 1990 Phys. Lett. 234B 401
[22] Floreanini R, Spiridonov V P and Vinet L 1990 Phys. Lett. 242B 383
[23] Song X C 1990 Preprint $90-7$ CCAST
[24] Chang Z, Chen W, Guo H Y and Yan H 1990 Preprint 90-16, 21, 22, 23, 33 ASITP
[25] Pasguier V and Saleur H 1990 Nucl. Phys. B 330523
[26] Reshetikhin N Yu and Smirnov F 1990 Preprint Harvard University MP
[27] Smirnov F and Takhtajian L A 1990 Preprint Colorado University AMP program
[28] Sun C P and Ge M L 1991 J. Math. Phys. 32595
[29] Sun C P, Xue K, Lu X F and Ge M L 1991 J. Phys. A: Math. Gen. 24 in press

[^0]: * Work supported in part by the National Science Foundation of China.
 § Mailing address.

