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.ma::ii:. n e  pr0pei;ies of g.difOi~-id boson opeiatois -with non-gi"i'ii y (y  is a roo; 
of unity) are analysed by using the representation theory method and their finite- 
dimensional representations are thereby obtained. Based on this discussion, reducibilities 
and decompositions of q-deformed bosomrealized representations of quantum universal 
enveloping algebra U,SL(/) are studied far non-generic cases. The explicit matrix elements 
of Some indecomposable representations are obtained on the q-deformed Fock spacer. 
Necessary details are provided for UqSL(Z) and U p L ( 3 ) .  In particular, the Lusztig operator 
extension of UISL(2) is discussed in an explicit form. 

1. Introduction 

The quantum group and quantum universal enveloping algebra (QUEA) [ 1-61 are deeply 
rooted in many nonlinear physics theories through the Yang-Baxter equation [7,8]. 
Recently, considerable attention has been paid to the representation theory of QUEA. 

The standard theory of mathematics has been developed respectively for the generic 
case [9,10] and the non-generic case that 9 is a root of unity [ l l ,  121. Besides these, 
the q-deformed boson (oscillator) realization, a q-analogue of Schwinger-Jordan 
mapping, of QUEA was presented independently by different authors to simplify 
manipulations constructing representations of QUEA in [13-15], where our discussion, 
as a continuation of previous work [16-18] about the usual boson reaiization of Lie 
algebras, mainly involves the QUEA U,SL(I) = SLJI). This method of representation 
theory is not only easy to comprehend for physicists, but is also a powerful tool to 
calculate the explicit matrix elements for the representations of QUEA. Following this 
work, various further investigations have been carried out in [19-241. 

However, except for [19] and 1243, where the non-generic case is discussed to a 
smaii extent, the discussions of the 9-deformed boson reaiizaiion mentioned above 
only concern the generic case that 9 is not a root of unity and there was not a systematic 
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analysis for the q-deformed boson realization of QUEA in the non-generic case. In this 
and a forthcoming paper, we will systematically study the q-deformed boson-realized 
representations of QUEA when 9 is a root of unity, since this case is very important 
for physics [25-271. 

This paper is arranged as follows. In section 2 we discuss the representations of 
the q-deformed boson algebra, which plays a crucial role in our problem for the 
non-generic case. Using the central idea in section 2, we study the decomposition 
structure of q-deformed boson-realized representations of SL,(2) for the non-gzneric 
case in section 3 and then discuss the representations of the Lusztig extension SL,(2) 
of SL,(2) explicitly in section 4. In section 5, we generalize the discussion of SL,(2) 
to the QUEA SL,(l) and general results are obtained. Applying them to SL9(3), we 
discuss q-deformed boson-realized representations of SL9(3) in detail for p = 3. 

In this paper the symbols Z, Z+, C and Z' denote respectively the set of integers, 
non-negative integers, the complex number field and the set of lattice points: 
{ ( n , , n ,  ,..., n , ) / n , ~ Z ,  i=1,2 , . . _ ,  l ) .  According to Lusztig [ll], we can consider p 
as an odd integer 2 3  without losing generality. 
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2. Represeotatioos of q-deformed boson operators for qp = 1 

The q-deformed boson (9-B) algfbra B is an associative algebra generated by the 
boson operators at and a -  = a, N and unity that satisfy 

[ k, U * ]  = *a* 9 E C .  (1) 
+ - 1  + aa - 4  a a = q N = Q  

Its elements a, at and Q generate its subalgebra, called q-deformed Heisenberg-Weyl 
(q-Hw) algebra. For the generic case, the representation theory of q-B and q - ~ w  
algebras has been given in [28]. 

Now, we consider the non-generic case. On the q-deformed Fock space F: {In)=  
a+"lO)l n E Z+ and a10) = 0, QIO) = IO)}, we obtain an infinite-dimensional represen- 
tation p 

a+ln)= In+ 1) aln)= [ n l l n  - 1) Q l n ) =  4 7 4  (2) 

by using the relations 

Qa'" =q*"a'"Q aa+" = [ n ) a + " - ' Q + q ~ " a + " a  

which result from (1). Here we have defined that [f]= (q+-q-')/(q-q-') for any 
operator f or number 1: 

Although the representation (2) is irreducible for the generic case, it is reducible 
for the non-generic case because there exists the singular vectors 1k.p) such that 
olk.p)=O (this is due to [ k . p ] = O )  for ~ E Z + .  

Theorem 1. For the non-generic case, the representation (2) is indecomposable (reduc- 
ible, but not completely reducible). 

Proof. From (Z), we easily observe that there exists an invariant subspace V"]: {lkp+ 
n) I n E Z+) defined by a singular vector Ikp), namely, the representation is reducible. 
Obviously, a complementary space V'']: { l n ) l n  = 0,1,2,. . . , kp-1) is not invariant. 
Now, we need to prove that any complementary subspace for V[*] is also not invariant. 
In fact, we suppose that there is an invariant complementary space v' for V[" such 
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that F =  V[']O V'. At least it must have an element with two components separately 
in VLkl  and ?'I, i.e. we can let this element be 

xp-1 a 

I+= 1 c h ) +  1 b , h ' )  
n=o n ' = k p  

where there are a c. # 0 and a b.. # 0 at least. By action of at on Ix), we have a non-zero 
vector 

kD-1 m 

n=o n'=kp 
a'"jx)= 1 c.In+kp)+ b J n ' + k p )  

a 

= 1 c , /n+kp)E  V['] 

c n = b . f o r n = k p , k p + 1 , k p + 2  ,.... 
n = o  

However, since V i s  invariant under the action of representation ( 2 ) ,  ~ " ~ l x )  E V', that 
is to say, V'n  V[kl#{O) .  It is impossible because of the proposal F =  V'O V[']. 
Therefore, the proof is ended. 

Now, considering the invariant subspace chain 
F = VLo1 3 V[" 3 VL2] 3 , .  , 3  VCkl 3 V[ht'] . . , 

we observe that all the subrepresentations pCh1 on invariant subspaces VCk1 are also 
indecomposable. Although these representations are infinite dimensional, the quotient 
representation p['."] induced by ( 2 )  on the quotient space Q(k m )  = V[']/ V["] ( m  > k): 

{ l(k, m)n)=lkp+n)mod VLmlln = 0 , 1 , 2 , .  . . , ( m  - k ) p - 1 )  
is finite dimensional and its dimension is ( m  - k ) p .  Using ( 2 ) ,  we write the explicit 
form of p['"']: 

a+l(k m)n)=l(k m ) n + l )  
a'l( k m )  n) = 0 

n = O , 1 , 2  ,..., ( m - k ) p - 2  

for n = ( m  - k ) p  - 1 
a l ( k m ) n ) =  [ n ] l ( k m ) n  - 1 )  (3)  

Q l ( k m ) n ) = q " l ( k ,  m ) n ) .  
Here, it is pointed out that when m = k +  1 ,  the representation prkml i s  irreducible. For 
example, for p = 3, we obtain a 3~ irreducible representation 

a + =  (1 1 0 : 0 1) a =  (1 0 0 1 [ 2 ]  1) Q=k i :) (4) 

on thequotient space Q(~k+l):{~(k,k+l)O),l(k,k+l)l),l(k,k+1)2)). I t i seasy to  
check that (4) satisfies ( 1 )  by noticing q 3 =  1 .  

T h e  above discussion is naturally generalized to the case of many bosons with the 
operators o;=ai ,  a t  and fi; satisfying 

ai ai for i#j 
q - ' a T a j + q f i ,  q - ' a : o , + Q ,  for i#j 

[ f i j , K J l = [ a : , a ~ 1 = ~  ( 5 )  
{ +  a.at = 

' I  

[ f i j , o ; ] = s o ( * a ; )  
where i = 1,2, .  . . ,1. 

Because of the indecomposable properties mentioned above, the representations 
of  QUEA in terms of the q-deformed boson operators have new reducible structures. 
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3. Representations of SL,(2) 

The q-deformed boson realizations of the generators J ,  and J ,  for the QUEA SL,(2) are 

( 6 )  
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" >  + J + = a , a ,  J _ =  ais, J3 = N I  - N 2 .  

On the two-state q-deformed Fock space 

F ~ :  {Inl, n2)=a: '~a:"~lo)In , ,  n , E Z + ,  a j l ~ ) = f i i 1 0 ) = ~ ,  i=1 ,2 )  

the representation of SL,(2) [14], 

J+lni, "2)=[n2lln,+ 1, n2-1) 

J - l n , n J =  [ni l ln ,  - 1, n2+ 1) 

J d n , ,  n2)=  (ni - n2)Inij n2) 

(7) 

is obtained from the realization (6). On the invariant subspace 

ViN1: { f N (  n )  = In, N - n)l n = 0,1,2, .  . . , N E  Z} 
the above representation subduces a ( N +  1)-dimensional representation r: 

J + ~ N  ( n )  = [ N - n l f N  ( n  1) 

J - ~ N (  n ) = [n I ~ N  ( n  - 1) (8) 

JJN ( n )  = (2n - N ) ~ N  ( n )  
which is irreducible for the generic case. 

f N ( N - p p )  such that 
However, for the non-generic case, there are two singular vectors f N ( a p )  and 

J - f ~  (UP) = 0, J + ~ N  ( N  -PPI = 0 (9)  

for two positive integers a and p s N / p .  It follows from (8) and (9) that the subspaces 

U, = { f N ( a p  + n) I n = 0, 1 , 2 , .  . . , N - ap)  

and 

WO = I f , (  N - p p  - k) I k 0,1,2,. . . , N - p p }  
are invariant; and U=, and W,. (CY'> CY, /3'> p )  are respectively the invariant subspaces 
of U, and W,. Thus, the representation (8) and its subrepresentations on U, and W, 
are reducible in the non-generic case. 

According to the singular vectors f N ( a p )  andf,(N-pp), there are three types of 
decen2po:itinrl forthe :epresex:atierl space V:" re!atizg to the char2cters of U,, r\ Y- II' 

Type I. When ap - 1 > N - pp ,  U, n W, = {0}, the representation ( 8 )  is indecompos- 
able. This can be proved by the same method as that for the proof of theorem 1. 

Type rr. When ap- 1 = N - p p ,  we have f N ( a p -  1) = f N ( N - p p )  and 

;+fN(ap - i )  = ; + f N ( N  - p p j  = 0 

J - f N  ( a p )  = 0 

that is to say, 

Vi" = U, 0 w, U, n WO = (0). 
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Therefore, the representation (7) is decomposed into a direct sum of two subrepresenta- 
tions separately on U, and W,, namely, the representation (8) is completely reducible. 

Type 111. When a p  - 1 < N - pp, 

&n W,=Ifh(ap),fh(ap+l),f,(p+2), .... f d N - P p ) }  

is a smaller invariant subspace, which does not have an invariant complementary space. 
Thus, the representation (7) is also indecomposable. 

Now, as examples, we discuss the case of p = 3 for N = 3, 4, 5 and 6. In terms of 
the matrix units Ev such that 

(J5.i 1 XI C a j ,  

we write the explicit matrices of the representations for N = 3, 

The decomposition of these representations is illustrated in figures l ( a - d )  where 
the upward and downward arrows denote the actions of J+ and J- separately. It is 
easily observed from figure 1 that the representations (10) and (11) possess the 
reducibility of type I; the representations (12) and (13) possess reducibilities of type 
I1 and type I11 separately. 
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Figurel. Redudiansofrepresentationsfor(a) N = 3 , ( b )  N = 4 , ( e )  N = 5 a n d ( d )  N = 6 .  

4. Lusztig operators 

According to the PBW [lo] for QUEA, the basis for SL,(2) can he chosen as 

u ( m , n , k ) = J , " J ! J ;  m , n , k E Z + .  

For any X E  SL,(2), 

where Cmnh ( E @ )  usually are not infinite. We can regard x as an operator on a 
representation space V. For a given representation space V of SL,(2), we extend SL,(2) 
to include a class of operators 

such that their actions on V possess finite limit, where some coefficients Emnk must be 
infinite. The extended SL (2) is denoted by SL,(2) and a representation of SL,(2) is 
still a representation of h q ( 2 ) ,  but a representation is not definitely reducible for 
SL,(2) even if it is reducible for SLq(2). 
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According to Lusztig [ I l l ,  we introduce the Lusztig operators 

L,= lim [(l/[p]!)J$] 

to extend z q ( 2 )  for the representation space ViN1, We have the following theorem. 

Theorem 2. The actions of the Lusztig operators L, on the space V;” are finite and 

ProoJ Using (7) and 

[ n ]  = [ a p  + n’] = [n’] lim ( [aPl / [~l)  = a 
q“-l  

we obtain J ! f N ( n )  = 0 when n <p; when n a p ,  

J - f N (  n )  = [up+ n’][ap + n ’ -  l][ap + n‘-2]. . . 
x [ a p  + n’ - p + 2][ ap + n ’ - p + 1 IfN ( n - P I  

=[il’][n’-l][n’-Z]. . . [l][ap][p-l][p-2]. . . [n’+2][n’+l]fN(n-p) 

= [ap][p- l]!fN(fl - p )  =o. 
Then, 

L-fN(n) =!!?, ([mPI/[Pl)fN(fl - p )  = a f N ( n  - p ) .  

Using the same method, we prove (15) 

Now, according to this theorem, we analyse decompositions and reducibilities of 
the representation (7) as a representation of rL,(2). Because of the actions of L,  on 
f N ( n )  such that 

L - f ~  ( .PI = f ~  [(a - 1 )PI 

L + ~ N  ( N  - pP) = (a’- p ) f ~  [ N - ( p  - 1 )PI 
the subspaces U, and W, are no longer invariant for x q ( 2 ) .  As follows, we make a 
concrete analysis for the reducibilities and decomposations of representations (10)- 
(13). 

(i) In representation (lo), there are two I D  SLq(2)-invariant subspaces, { f , ( O ) }  and 
{ f , ( 3 ) } ,  but they transform into each other under the actions of L,.  Hence, only 
{f,(O),f,(3)} is an xq(2)-invariant subspace; 

(ii) In representation (1 I ) ,  there two 2D SL,(Z)-invariant subspaces, {&(O),f4( I)} 
and {f4(3),f4(4)], but they transform into each other under the actions of L,. Hence, 
their union {f4(0),f4( l),f(3),f(4)} is x q ( 2 )  invariant. 

(iii) In representation (l2), there are two 3~ SL,(Z)-invariant subspaces, 

N = a ’ p +  N’, 0 s  N’Sp-1  

{h(O),M),j5(2)} and (fs(3),f~(4),f5(5)l, and 

Thus, as a representation of SLq(2), (12) is completely reducible. However, due to the 
actions of L,,  the whole space Vi5’ carries an irreducible representation ofTLJ2); 

“[SI 2 - - ~ f s ~ ~ ~ , f s ~ ~ ~ , f ~ ~ ~ ~ I ~ ~ f 5 ~ ~ ~ , f , ~ ~ ~ , f 5 ~ ~ ~ 1 .  
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A 
Figure 2. Representations ofSLJ2) for (a) N = 3 ,  ( b )  N = 4 ,  (e)  N = 5  and ( d )  N = 6 .  

(iv) In representation (13), there are three I D  SLq(2)-invariant subspaces, {f6(0)}. 
{f6(3)} and {&(6)}. They transform into one another under the actions of L,. Hence, 
they span a 3~ =,(Z)-invariant subspace. 

The above is illustrated in figure 2(a-d) where the broken upward and downward 
arrows denote the actions of L ,  and L- separately. 

5. Representations of SL,(l): general discussion 

In this and the following sections, we generalize the method for SL,(2) in the last 
section to the general case of SL,(I) when q is a root of unity. As we well know, SL,(I) 
(133)  are associated with the standard R-matrices for the Yang-Baxter equation as 
well as SL,(2) in the standard case that the usual irreducible representations are used 
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[4]. Recently, we obtained new R-matrices besides the standard ones by constructing 
and studying the new boson representations of SL,(2) in detail [29]. A similar situation 
should naturally apply to SL,(I) ( 1 2 3 ) .  Thus, it is necessary to provide sufficient 
details of the new representations of SL,(I) for the construction of the new R-matrices 
associated with SL,(/) as follows. 

The q-deformed boson realization of QUEA SL,(I) is 
1 1  

Hi = Ni - N(+,  

E, = at.,,, F t = a T + , a i , i = l , 2  ,..., 1-1. 

The basic relations ( 5 )  ensure that 

[H,,H,]=O 

[Hi, E,] = asE, 

[ E : ,  F,I=&j[H,l 

[Hi, F,] = -a& 

GjG,,, -(q+q-')G,G,,,G,+ G,+,G;=O 

where all = 28, - 
or  F,. 

- 8,,-, is the element of the Cartan matrix a of and G, = E, 

On the q-deformed Fock space 

Fl: { l m ) = I m , ,  m2 . .  . . , m,)=a:'"~a:"'2a:'''J ... a:"ilO) 

a , 1 0 ) = ~ , 1 0 ) = 0 , m , E B , . i = l , ~  ,..., 11 
we obtain a representation of SL,(/) 14 

where m = ( m , , m 2 ,  ..., m,)EZ: and 

e, = ( I ,  0,. . .,O), e2=(0, 1 , .  . . ,O), . . ., ei = (O,O,. . . , 1 )  

.are linear-independent unit vectors in Z'. 
It follows from (18) that the vector Im) for the representation (18) possesses a 

certainweightA=(A,,A, ,..., A,-l)=(m,-m2,m2-m, ,..., m,-,-m,)anddifferent 
labels (ml , m,, . . . , mi) and ( m ,  + c, m2+ c, . . . , m, + c )  ( c  E C) correspond to the same 
weight A. The latter is because the representation given by (18) is reducible. In fact, 
the sum X!-, mi of the labels mi is invariant and then g": {lm)lX:]=, mi= N ]  for a 
fixed N EZ+ span an invariant subspace for the representation (18). Constrained on 
the invariant subspace Vi", the m such that E!=, mi= N uniquely label the state 
vectors and define the corresponding weight A = (m, - m,, m2 - m,,  . . . , mi-, - mr) .  

For convenience, in the analysis of representation reduction as follows, we introduce 
newlabelsA=(A,,A2,AI~l)wbereAi_,=0,1,2 ,..., A,foragivenA\ i (A,=O,Al=N;i=  
1 , 2 , .  . . , I), which are equivalent to the constrained labels m. Then, we rewrite the basis 

f N ( A ) = f N ( A i , A > ,  . , ., A I - I ) = I A ~ - A o , A ~ - A I , .  . ., A I - I - A I - ~ ~ A I - L I )  
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for the invariant subspace t$" where A o = O  and A , = N .  On the space t$" the 
representation (18) defines a finite-dimensional subrepresentation 

Chang-Pu Sun and Ma-Lin Ge 

€ i b ( . \ ) = [ A \ i + i - A \ i l f ~ ( A  +e,) (19a) 

H;~N(A) = ( % - A ( + ,  - A t - t ) f ~ ( A )  ( 1 9 ~ )  

F ~ N ( A )  = [ A i - h i - i l f ~ ( A  (1%) 

whose dimension is 

( N  + I - l)! 
( I - l ) ! N !  ' 

d ( N ,  I )  = 

Here, A is in a domain A ' - ' : { A = ( A , , A 2  , . . . ,  A I ~ , ) ~ Z ' ~ l ~ A o = O , A N = N , A , _ , =  
0, 1 , 2 , .  . . , A ,  for a given A, ,  i = 0, 1 , 2 , .  . . , I) of Z'-' and e, E Z'-'. For the generic case, 
(19) is irreducible and has the highest weight = ( N ,  O,O, . . . ,0)  corresponding to the 
highest-weight vectorfN(N, N , .  . . , N )  = IN, 0,. . . ,O). Thus, the representation (19) is 
a completely symmetrized representation [ 141. 

Now, we consider the non-generic case. Because each vector f N ( A )  in the space 
V," corresponds to a sole lattice point A = ( A l ,  A > ,  . . . , A,-J E A'-' c Z'-', we can 
describe the action of representation (19) on the basisfN(A) by the move of the lattice 
point A. Define a hyperplane 

7ip: {A E Z : ' ~ A ~ + , - A ,  =np}  

in the lattice space Z'-'. It cuts a domain A:: 
{ A E Z ' - ' I A , + I - A , > a p )  

out of A'-'. Then, we have the following theorem. 

Theorem 3. All the vectorsfN(A) in V," corresponding to all the lattices in the domain 
A: span an invariant subspace V,, of V," under the action of representation (19). 

Proqf It follows from ( 1 9 ~ )  and (196) that 

m 
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Considering that all the vectorsfN(A) corresponding to all the lattice points A in 
the hyperplane T P  satisfy 

[ A ; + , - A i l =  [ rrp] = 0 

E,W(i, rrp, = 0 

we have 

E + ,  W(i,  ap)=O 
and 

E,W(i, k ) c  W(i,  k - l ) c  V,( 

F;+, W(i,  k )  c W(i,  k -  1 )  c V,< k = rrp + 1,  rrp + 2, . . . 
namely, the subspace Vmi is also invariant under the actions of E, and E.+l, and the 
theorem is proved. 

According to theorem 3, there are many invariant subspaces Vmj corresponding to 
different hyperplanes IIp for different i s  and as. Like the analysis of SL,(2), the 
discussion of the reducibility of representation (19) results from the situations of the 
cross V,; n V,.i, (a, i # a’, i’). In the following section, we will use SL9(3) as an example 
to discuss this problem in detail. 

6. Representations of SL,(3) 

When p = 3 ,  from (19), we obtain a representation of SL9(3):  

Eif~(A1,h2)=[A2-hllf~(hl+l,A2) 

( A  I ,  A 2 )  = [A’ - A 2 l . f ~  ( A  I 9 A 2  + 1 ) 

F J N ( A I ,  A21 = [ A i l f ~ ( A t -  1, A 2 )  

F ~ ~ N ( A I  3 A 2 )  = [ A 2 - A i l f ~ ( A i ,  A 2 -  1 )  

H i f ~ ( A i .  A ~ ) = ( ~ A I - A ~ ) ~ N ( A ~ ,  A21 

Hzf~(hi, A>)  = ( 2 A 2 - A i  - N ) ~ N ( ~ I  3 A21 

where A1=O,  1 , 2 , .  . . , N ;  A ,  =0, 1 , 2 , .  . . , A 2  for a given A 2 .  This representation is 
irreducible for the generic case. 

In order to analyse the reducibility and decomposition of this representation when 
q is a root of unity, we introduce the following ZD lattice diagram (figure 3) to describe 

A t  

Figure 3. Diagram for the representation space V,” and the aclions of representation (22). 
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this representation. Here, each lattice point in AOAB denotes a weight vectorf,(A); 
the upward, downward, right and left arrows denote the actions of E,, F , ,  E2 and F2 
respectively. 

Chang-Fu Sun and Mo-Lin Ge 

The fact that [kp] = 0 for k E Z, defines three character lines: 

I , :  A2-A,=ap 

1,: N - A2 = pp 

I,: A ,  = yp a,P, V E Z t  

which depict the reducibility of the representation (22). The three lines cut out of 
V,”: { f N ( A l .  A2)] three kinds of invariant subspaces, 

v,(3): { f ~ ( A l ,  A2)  I A z -  A I  3 aP} 

CJ0(3): I f N ( A 1 ,  A21 IN- BPI 
w7(3): { f ~ ( h i ,  A 2 ) I A i a  YP} 

with the singular vectorsfN(A,,Al+ap),fN(AI, N-Pp)  andfN(yp,AJ respectively. 
These vectors satisfy 

Eif~(.hi, h i  + aP) = F ~ ~ N ( A I ,  A I  +aP)  = o  
E 2 f ~ ( h  I ,  N - PP) 0 

F z ~ N ( Y P , A ~ ) = O .  

The bases for these invariant subspaces V,(3),  UB(3) and W,(3) respectively correspond 
to the lattice points in the shadowed domains of figures ~ ( u - c ) .  

0 A *  

Figure 4. Diagrams far three types o f  invariant subspaces. 
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Considering that a cross of any two of these invariant subspaces is still invariant, 
we can obtain some lower-dimensional representations subduced by (22) on the 
following invariant subspaces: 

91 = VA3) n Up(3) n WJ3) 

Q 2 =  V A 3 ) n  4 ( 3 )  

Q3 = 4 ( 3 )  n WJ3) 

Q4= WY(3)n V.0). 

There are various situations of reducibility of spaces that are represented in figures 
5 ( a - f ) .  Here, the shadowed domains correspond to invariant subspaces resulting from 
the crosses of original invariant subspaces. 

Now, we calculate two representations of SL,(3) from (22). When p = 3 and N =4, 
we have a ISD indecomposable representation: 

El = E u f  &sf Eti.ti + E I , . M + [ ~ I ( E ~ , ~ +  ELI,,+ Et4.12) + Ei0.7 

FI = &,6+ &.7+ E,,,+ E ~ , s + [ ~ I ( E ~ . I o +  Ea,,, + E ~ , I J +  E,,,, ,  



E , , . , , +  

k, 

Figure 6. IJD indecomposable representation. 
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0 1 2  3 4 5,q 
A *  

Figure 7. Z I D  indecomposable representation 

From its representation diagram (figure 7) we observe that there are three 6~ invariant 
subspaces 

Si(6): 

Sz(6): 

Ifs(0, O ) , f s ( O ,  l),fs(O, 2),fs(1, l ) , fs( l .  2),fs(2,2)J 

{ f s ( O ,  3 ) , f s ( O ,  4),f5(O9 5),fs(1, 4 ) , f s ( l3  5),fs(2,5)J 

{h(3,3),f,(3,4),f,(3,5),f,(4,4),fs(4,5),fs(5,5)) 
on which the representation (24) subduces the 6~ irreducible representations. 

Lusztig operators 
Finally, we point out that the problem will become very complicated when the 

3 - E ;  - F! 4 
[ P I !  [PI ! [PI! [PI ! 

are introduced to extend SL,(3). Some details concerning this problem will be published 
elsewhere. 
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